
Avista's Lake Spokane DO WQAP

Meghan Lunney
Aquatic Resource Specialist

Spokane River and Lake Spokane DO TMDL Advisory Committee Meeting

May 22, 2013

Outline

- 1. Regulatory Context
- 2. Lake Spokane DO WQAP Contents
- 3. Potential Reasonable & Feasible Nutrient Reduction

Measures

- 4. Load Estimates
- 5. Prioritized Measures
- 6. Measuring Progress
- 7. Reporting
- 8. Status

Regulatory Context

- > DO impairments, 303(d) Listed
 - Nutrients from Point and Non-point Sources
 - Impoundment creating Lake Spokane increases residence time for water flowing down the Spokane River
 - Thermal Stratification

- Spokane River and Lake Spokane DO TMDL
 - WLA, LA, Avista
- > WA 401 Certification License Amendments
- Lake Spokane DO WQAP

Source: www.cosee.ne

Lake Spokane DO WQAP Contents

- > Estimates proportional responsibility in TP
- ➤ Identifies potentially reasonable & feasible measures to improve DO in Lake Spokane
- ➤ Schedule to analyze, evaluate & implement such measures
- > Benchmarks & reporting to track progress
- ➤ 10 Years to implement

Potential Reasonable & Feasible Nutrient Reduction Measures

- ➤ Carp Reduction
- > Aquatic Weed Management
- ➤ Wetland Restoration
- ➤ Lawn Area Reduction
- ➤ Hangman Creek
- ➤ Grazing Land Conversion
- Septic Systems Education
- ➤ Irrigation Pump

Load Estimates

October 2012		
Avista will work wi	th Ecology, as appropriate, before implementing mitigation measures. sary permits prior to implementation.	This includes

Table 3-1: Summary of Potential Measures and Estimated Existing Phosphorus Loads

		Type	Basis of Loading Factor Calculation	Estimated Lake Spokane Loading (kg TP/year) ¹
Reducing Carp Populations		Direct reduction in biomass from carp removal; subsequent reduction from reduces bioturbation and nutrie pumping is not include	125,000 carp x biomass/carp x TP proportion of carp biomass x proportion of	1,594 – 2,625 kg/yr
Aquatic Weed Management		Reduction in biomas	Summation of invasive species-specific acres x mass TP/acre	481 – 3,852 kg/yr
Wetland Acquisition, Restoration, and/or Enhancement		Load reduction by increased P-uptake	42.51 acres x mass TP uptake/yr	310 – 3,100 kg/yr
Hangman Creek Load Reduction		Reduction in sedimer phosphorous (March October)	DO TMDL	DO TMDL Actions: 867 kg/yr
Improved Septic System Operation via Education		Reduction in Phosphorous discharge	410 households x wastewater TP concentration x wastewater volume/household x (1- soil TP retention factor)	188 – 1,077 kg/yr
Lawn Area Reduction		Reduction in Phosphorous run-off	74 acres x fertilizer application rate (kg TP/acre-year) x portion of applied TP that becomes runoff (6.2%)	72.5 kg/yr
Grazing Land Conversion Egetative Shoreline		Reduction in Phosphorous runoff	Number of acres (200 to 230) x grazing period precipitation (3.65 inches) x mass TP/acre-inch of precipitation (0.02)	15 – 17 kg/yr
Buffer on Avista Owned Property		Manager Ogs	-	None at this time.
Withdrawal		emove irrigation rater with higher phosphorus concentrations	TP concentration of water removed (mg TP/L) x volume of water removed (L/year)	5 kg/yr with the intake at 25 m below surface

Notes:

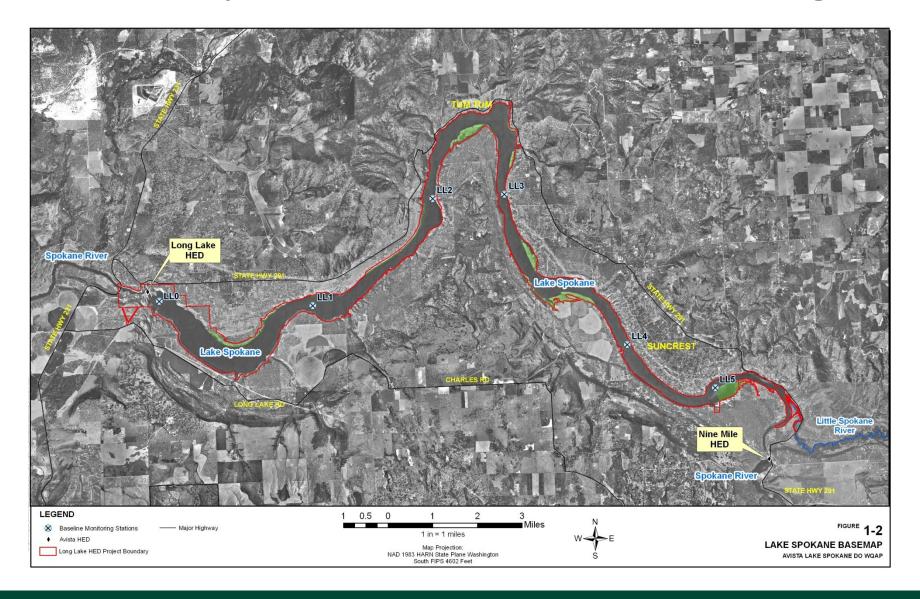
¹ Source: Range of calculations in following subsections.

Prioritized Measures

- Avista will focus initial efforts on two of these measures:
 - Carp Population Reduction
 - Aquatic Weed Management

Measure Progress

➤ Monitoring


- Measure specific monitoring
- Baseline nutrient monitoring
- Habitat analysis

≻ Modeling

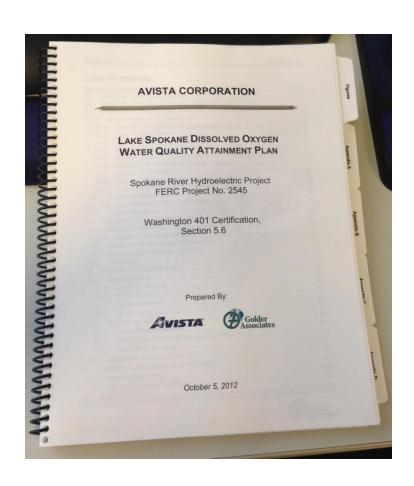
- Incorporate additional flow regimes (10 years)
- Update with new bathymetry

Lake Spokane Nutrient Monitoring

Reporting

➤ Annual Reports

- Results of Baseline Monitoring
- Summarize Implemented Control Measures
- Summarize Mitigation Measures to be Implemented in Upcoming Year
- Ongoing Habitat Analysis


Five, Eight, and Ten Year Reports

- Annual Reporting Content, plus....
- Document Progress Towards Improving DO and Habitat Conditions in Lake Spokane

Lake Spokane DO WQAP Status

- Submitted to Ecology in May 2012
- Revised and resubmitted it to Ecology
- Received Ecology Approval in September 2012
- Submitted to FERC for Approval October 2012
- Approved by FERC August 2012

QUESTIONS?

